Incorporating Connotation of Meaning into Models of Semantic Representation: An Application in Text Corpus Analysis

Shane T. Mueller, Ph.D.
Klein Associates Division, ARA Inc.
Fairborn, OH
smueller@ara.com
smueller@decisionmaking.com

and

Rich Shiffrin, Ph.D.
Indiana University
Klein Associates Division (KAD)

Background:

- Originally Klein Associates Inc., founded in 1978, acquired by ARA in Sep-05
- 50+ employees
- Customers include DOD and Commercial
Applied Research Associates (ARA)

Company Background

- Founded in 1979, HQ’d in Albuquerque, NM
- Employee owned company
- 17 Divisions across the country
- 1,100+ Employees at locations in US and Canada
- FY06 Sales of ~$170M
- Sustained 27 years of double-digit growth
Background

- Semantic Knowledge forms, and is formed by, meaningful episodes.
- Meaning can be driven by Contextual Semantics:
 - Meaning can be inferred through context.
 - Meaning can depend upon context
REM-II: A Bayesian model of Episodic Memory and Semantic Knowledge

- New developments of a Bayesian feature-based model of episodic memory.
- Incorporate assumptions about how contextual semantic information is learned and used.
- If assumptions are accurate, the model should be able to “read” text corpora and develop meaningful representations.
Traditional Vector-space Approaches (e.g., LSA)

- Meaning for a word is a point in space.
- Geometry is a bad model of semantics (e.g. Tversky, 1975): the dimensions (features) matter.
- This **prototype** approach succeeds at synonymy, but fails to capture polysemy.
Prototypes: The good and the bad

- Allow multiple poor exemplars to accrue information
- Provide an encapsulated representation for fast interpretation of world

BUT....

- Completely misses important aspect of **Contextual Semantics**: connotation of meaning

For example:
- Homonyms/homographs: bank
- Polysemes: mouth
- Connotation or aspect: kitchen
Beyond the prototype

- Prototypes use a single 'average' representation.
- We store feature co-occurrence, rather than feature occurrence.

[<5 3 | 3 4 | 1 0 0>]

- Each cell is the co-occurrence of features within experienced exemplars.

<3 6 | 0 1 | 1 3 0>
<3 0 | 4 3 | 0 0 3>
<4 1 | 3 5 | 4 2 1>

- Each row is a conditional prototype, the average representation when some feature was present.

<1 1 | 0 4 | 6 0 1>
<0 3 | 0 2 | 0 4 1>
<0 0 | 3 1 | 1 1 4>]

- Allows contextually distinct representations to be segregated (polysemy, connotation, etc.)
Conditional Prototypes

• Each concept is a set of conditional prototypes (conditioned on the presence of some feature).

• Number of prototypes $=$ number of features
Expanding the Realm of Possibility

Forming Co-occurrence matrix

- Any set of features can produce a co-occurrence matrix.

- 110011 and 001100 form co-occurrence matrix at right

- Knowledge accrues by incorporating co-occurrence matrix from individual episodes into current knowledge structure.
LTM Co-occurrence matrix

- Over time, complex matrix representation will form.
- Word has two primary concepts 1-2-5-6 and 3-4.
- 1256 is stronger than 34
Encoding Episodes from Knowledge Matrix

- Requires sampling features from knowledge matrix
- Generic Encoding: pick row, pick feature, pick new row based on what has been sampled, repeat.
- Biased Encoding: pick row from another trace, pick feature from that row of current matrix, repeat.
 - (Meaning can depend upon context)
Applications

- Laboratory Memory Phenomena (Will not discuss):
 - Frequency Effects in Episodic Memory
 - Forward bias CRP functions in free recall
 - Perceptual learning

- Corpus Analysis: The “Real” World?
 - REM-II can 'read' a text corpus and develop semantic spaces similar to other methods.
 - Multi-language semantic spaces.
 - Techniques for incorporating integral semantics into contextual semantic representations

- Beyond linguistic applications
Operation of Model

- Identify each word in statement
- Encode features for each word
 - (New words start with random feature sets)
- Evaluate likelihood of features versus base rate
- Create semantic composite
- Compute co-occurrence matrix
- Add features into each trace
- Each sentence is used as a context or document (running windows, decay, etc. are also possible)
Demo 1: Toy Problem

- Four probabilistic contexts:
 - $A_1 A_2 P_1$
 - $A_1 A_2 P_2$
 - $B_1 B_2 P_1$
 - $B_1 B_2 P_2$

- 20 Features, 5000 iterations for learning
- Encoded 100 episodes from each prototype (both biased and unbiased)
- Performed MDS in common space for visualization
Expanding the Realm of Possibility

Group A versus Group B episodic encodings

Non co-occurrent words (Words 4 and 8)

Polysemous Word 4 biased toward A or B

Polysemous Word 8 biased toward A or B

A Bias

B Bias
The GAC Corpus

- Product of the MindPixel project
 - Collaborative internet-based project to produce database of millions of human validated true/false statements.
 - Active from 2000 to 2006
 - Similar to OpenMind Common Sense (MIT)
- Released a set of 80,000 validated statements:
 - 660,000 words
 - 29,000 unique tokens
 - Stemming/stop-word removal reduced to 269,000/11,859.
- Rich yet broad source of knowledge.

- Used 40 features, read corpus multiple times, randomized order of statements.
Some results: “FLY”
Comparison to LSA
Top ten most similar to probes

<table>
<thead>
<tr>
<th>color</th>
<th>food</th>
<th>europe</th>
<th>man</th>
<th>fly</th>
<th>fire</th>
<th>car</th>
<th>earth</th>
<th>animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>food</td>
<td>europe</td>
<td>man</td>
<td>fly</td>
<td>fire</td>
<td>car</td>
<td>earth</td>
<td>animal</td>
</tr>
<tr>
<td>blue</td>
<td>eat</td>
<td>italy</td>
<td>woman</td>
<td>flap</td>
<td>match</td>
<td>drive</td>
<td>around</td>
<td>breath</td>
</tr>
<tr>
<td>violet</td>
<td>cereal</td>
<td>locate</td>
<td>physically</td>
<td>flame</td>
<td>wise</td>
<td>motorcycle</td>
<td>worm</td>
<td></td>
</tr>
<tr>
<td>combination</td>
<td>restaurant</td>
<td>portugal</td>
<td>attractive</td>
<td>touch</td>
<td>term</td>
<td>riding</td>
<td>predator</td>
<td>usually</td>
</tr>
<tr>
<td>red</td>
<td>rice</td>
<td>germany</td>
<td>virgin</td>
<td>airplane</td>
<td>wise</td>
<td>driving</td>
<td>usually</td>
<td>human</td>
</tr>
<tr>
<td>orange</td>
<td>regularly</td>
<td>belgium</td>
<td>average</td>
<td>balloon</td>
<td>off</td>
<td>automobile</td>
<td>intelligent</td>
<td>eat</td>
</tr>
<tr>
<td>primary</td>
<td>restaurant</td>
<td>music</td>
<td>naked</td>
<td>lighter</td>
<td>hot</td>
<td>form</td>
<td>sun</td>
<td>cockroach</td>
</tr>
<tr>
<td>yellow</td>
<td>mouth</td>
<td>japan</td>
<td>crave</td>
<td>african</td>
<td>lightbulb</td>
<td>move</td>
<td>spherical</td>
<td></td>
</tr>
<tr>
<td>combine</td>
<td>order</td>
<td>spain</td>
<td>reach</td>
<td>pop</td>
<td>term</td>
<td>vehicle</td>
<td>rotate</td>
<td></td>
</tr>
<tr>
<td>purple</td>
<td>usually</td>
<td>japan</td>
<td></td>
<td>fan</td>
<td>off</td>
<td>consume</td>
<td>moon</td>
<td></td>
</tr>
</tbody>
</table>

ARA - Expanding the Realm of Possibility
Demonstration of Connotation

Orange

ORANGE
COLOR
JUICE
RED
BROWN
SHADE
PURPLE
FAVORITE
YELLOW
COMBINATION
DANGER
BLUE
COMBINE
PRIMARY
FRUIT
ASSOCIATE
RAGE
APPLE
MIX
PINK

Orange as Color
complementary ↑
favorite ↑
orange ↓
red =
color ↓
juice ↓
brown ↓
shade ↓
marmalade ↑
hue ↑
mix ↑
yellow ↓
purple ↓
blue ↓
icon ↑
rage ↑
bluebird ↑
primary ↓
pigment ↑
violet ↑
combine ↓

Orange as Fruit
orange =
color =
juice =
favorite ↑
marmalade ↑
yellow ↑
red ↓
ripe ↑
pomegranate ↑
combination =
purple ↓
brown ↓
either ↑
toot ↑
associate ↑
rose ↑
plum ↑
blue ↓
fruit ↓
shade ↓
lime ↑
Summary

- At its core, a model of semantic representation.
- Extends a **process model** of episodic memory model to produce representations akin to statistical language models.
- Contextual semantics: meaning is inferred through and depends upon context.
- We are looking at ways to incorporate **non-context-based features** (part-of-speech, language-of-origin, etc.)
- Such a system can be useful beyond linguistic applications